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線形作用素について

　関数解析学の一分野であるヒルベルト空間上の線形
作用素について，行列や線形代数学を学んでいない高
校生の読者も念頭に基本的な内容から解説したいと思
います．

■	平面上の線形作用素

　Rを実数の集合とし，平面を

とします．平面上の点（ベクトル）

と実数 kに対し，和，実数倍，内積，ノルム（大き
さ）が

と定義されています．ここで，内積が 0となるベク
トルは直交しています．また，R2の点列 {xk}が点 x

に収束するとは

となることです．
　R2から R2への作用素 Tが線形であるとは，R2上
の点 x, y，実数α,βに対し

が成立することです．（作用素論では関数や写像ではなく
作用素という用語を用います．）線形性は数学や物理にお
いて多くの場面で登場します．

　点 (x, y)を縦に と表示し

とします．このとき Tの線形性を用いると

となります．行列の演算を

と定義すると

と表せます．さらに Tは連続になることも確認でき
ます．（Tが連続とは各点 xで点列 {xk}が xに収束すると
き，{Txk}が Txに収束することです．）

　具体的な線形作用素について考えましょう．対角行
列（対角成分以外は 0となる行列）

は

となるので第 1成分を 4倍，第 2成分を－2倍にす
る単純な作用素です．それに比べて

は
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現は となり S1 と同様な構造を持ちます．

つまり座標を変更することにより，作用素の構造が明
確になります．
　それでは，どのような行列がこのように対角化でき
るのでしょうか．一般に

は

となるとき，新たな正規直交基底を選び座標を変える
ことにより

と表現でき構造が明確になります（対角化）．このとき
λ1, λ2 は T の固有値となります．ちなみに λ が線形作
用素 T の固有値であるとは 0＝(0, 0) でない x∈R2

が存在して

となることです．

■	3次元空間上の線形作用素

　3 次元空間

上の点（ベクトル）についても，平面と同様に，和，
実数倍，内積，ノルムが定義されます．さらに R3 か
ら R3 への作用素が線形である定義も（1）と同様で
す．この R3 上の線形作用素 T は連続となり

と表せます．（R2 の場合と同様に証明できます．）ただし
行列演算は

とします．上記の行列で aij を T の ij 成分と言いま
す．
　平面の場合と同様に，T が各 i, j＝1, 2, 3 に対して

となるので，より複雑な作用素と思うかもしれません．
以下検討しましょう．
　e1＝(1, 0), e2＝(0, 1) は大きさが 1 で互いに直交し
ます．さらに各点 x は e1, e2 を用いて

と表せます．（点 x の通常の座標 (x1, x2) は e1, e2 を用い
た座標と言えます．）このような 2 つのベクトルを正規
直交基底と言います．e1, e2 を反時計回りに 45° 回転
させた

は，やはり正規直交基底となります．なぜなら f1, f2

は大きさが 1 で互いに直交し，各点 x＝(x1, x2) は

と表せるからです．f1, f2 を用いた新たな座標を
( , )f1f2 とすると

となります．（2）の S2 は通常の座標で表された点を
どのように写すかという行列表現ですが，座標 ( , )f1f2

で表すと S2 はどのような行列表現になるのか確かめ
てみましょう．
　新座標 (x1, x2)f1f2 で表される点は f1, f2 の定義より

と通常の座標で表せます．S2 は，この点を

に写しますが，座標 ( , )f1f2 で表すと

となります．つまり S2 は新座標のもとでは第 1 成分
を 4 倍に第 2 成分を－2 倍とする作用素で，行列表
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用素は正規となり，どちらも正規直交基底を変更する
ことにより対角化できます．対角成分の固有値は自己
共役作用素の場合は実数，正規作用素の場合は複素数
です．
　C2, C3を拡張した Cn上の線形作用素も連続となり
n×n行列 で表現できます．共役作用素，
自己共役作用素，正規作用素についても同様の定義が
でき対角化についても同様の結果が成立します．

■	無限次元空間 l2上の線形作用素

　Cn を無限次元に拡張した複素数列

の集合を考えます．和や複素数倍は Cn と同様に定義
します．一方，内積とノルム

が収束するように と が収束するという
条件を加えます．（この無限和が収束すれば内積も収束し
ます．）このような複素数列の集合を l2 と言います．
第 k成分が 1 で他の成分が 0 である複素数列を ek と
すると e1, e2, e3, …は大きさが 1 で互いに直交し，各
x に対し

つまり

が成立し正規直交基底となります．l2 から l2 への線
形作用素 T は Cn の場合と同様に無限行列を用いて

と表せますが，連続になるとは限らないところが異な
ります．よって，以下は連続な線形作用素のみを扱い
ます．共役作用素，自己共役作用素，正規作用素の定
義は Cn の場合と同様で，共役作用素 T* の定義が

（3）と同値となることも同じです．ただし，Cn の場
合と異なり正規作用素が対角行列で表現できるとは限

を満たすとき，正規直交基底

による通常の座標から別の正規直交基底による座標を
採用することにより

と対角化することができます．λ1, λ2, λ3 は T の固有
値です．（固有値の定義は R2 の場合と同様です．）

■	複素数への拡張

　C を複素数の集合とし

とします．C3 における和，複素数倍，ノルムの定義
は R3 と同じですが，内積は

に対し，

と定義します．（y1 は y1 の複素共役です．）このことに
より，ノルム

は 0 以上になります．
　R3 の場合と同様に C3 上の線形作用素 T も各成分
が複素数である行列で表せ連続となります．（線形作用
素の定義は（1）と同様ですがα,βは複素数です．行列演
算も同じです．）この T＝(aij)

3
i, j＝1 に対して，共役作用

素 T* を ij 成分を aji とした行列で表される作用素と
します．（T の行列を転置させて複素共役をとったものが
T* の行列です．）T* については，各 x, y∈C3 に対し

が成立し，この式を T* の定義とすることもできます．
（共役作用素 T * について上式が成立することは計算すれば
わかります．逆に上式が成立するとき x＝ei, y＝ej とする
と，T の ji 成分が T * の ij 成分の複素共役となることがわ
かり，T は共役作用素となります．）

　また aij＝aji つまり

となる作用素を自己共役作用素，T*T=TT* つまり
各 x∈C3 に対し

をみたす作用素を正規作用素と言います．自己共役作
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線形空間と言います．ただし，x, y, z∈X, α,β∈C

とします．

　抽象的な線形空間に次元の概念が導入できます．X

の元 x1, x2, …, xnが一次独立とは，この中のどの元
も残りの n－1個の元を用いて表せないことです．言
い換えると複素数α1,α2, …,αnが

を満たすならば必ず

となることです．なぜならば，このことが成立せずに
例えばα1≠0とすると

となり x1が他の {x2, x3, …, xn}の一次結合で表せる
からです．（α2≠0などの場合も同様です．）

　n個の一次独立な元は存在するが n+1個の一次独
立な元が存在しないとき Xは n次元であると言い，
どんな自然数 nに対しても n個の一次独立な元が存
在するとき，Xを無限次元と言います．
　n次元線形空間で n個の一次独立な元 e1, e2, …, en

をとると，どの xに対しても複素数α1,α2, …,αnが
存在して一意に

と表せます．ただし，この段階では内積やノルムが定
義されていないので各 ekの大きさや直交性は議論で
きません．
　次に内積が満たすべき規則を挙げて公理化した内積
空間を紹介します．線形空間 Xの元 x, yに対し複素
数 〈x, y〉が対応して次を満たすとき Xを（複素）内
積空間と言います．ただし，x, y, z∈X, α∈Cとし
ます．

りません．ただ，正規性だけではなく以下の述べるコ
ンパクト性を持つ作用素は対角行列で表現できます．
　l2の点列 {xk}＝{x1, x2, x3, …}が有界であるとは，
ある定数M>0が存在して，すべての自然数 kに対し
て ||xk||≤Mとなることです．また，点列 {yk}の部分
列とは，{yk}の中から無限個の項を選び，順番を変え
ずに並べてできる点列のことです．例えば偶数番目の
項を選ぶ {y2k}は部分列の一例です．
　l2上の作用素 Tがコンパクトであるとは，どの有
界点列 {xk}に対しても，{Txk}が収束する部分列を
持つということです．（他の空間上でも定義は同じです．）
　有限次元である Cn上の線形作用素はコンパクトと
なり l2上の連続な線形作用素 Tは値域 {Tx ;x∈l2}

が有限次元ならコンパクトとなります．
　正規なコンパクト作用素 Tは，すべての元を 0＝
(0, 0, 0, …)に写すゼロ作用素を取り除いた主要部分
は正規直交基底を選びなおした座標により対角行列

で表現できます．（上の行列で空欄は 0を表します．また
λnが有限個で終わる場合やゼロ作用素や対角行列の部分が
ない場合もあります．）コンパクトでない正規作用素 T

は対角行列で表現できるとは限りませんが，後述する
スペクトル分解定理で構造が判明します．

■	ヒルベルト空間上の線形作用素

　今まで述べてきた R2, R3, C3, Cn, l2はどれも和，
定数倍，内積が定義されています．大学数学の範囲に
なりますが (0, 1)でルベーグ 2乗可積分な複素数値
可測関数の集合 L2(0, 1)に属する f(x), g(x)に対し
ても和，複素数倍が自然に定義でき内積を

と定義できます．他の例も含めて，これらを統一的に
扱うために抽象化します．
　まず，和と複素数倍が満たすべき規則を挙げて公理
化した（複素）線形空間を紹介しましょう．
　Xの元 x, y，複素数αに対して，和 x+y∈X，複
素数倍αx∈Xが定義され次を満たすとき Xを（複素）
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します．このとき Xの各元 xに対し

と表せ xと l2の元となる

を同一視できます．この同一視により Xと l2が同一
視できます．よって，X上の作用素は l2上の作用素
とみなせます．以下の多くの結果は Xが可分でなく
ても成立しますが簡単のため可分性を仮定します．
l2, L2(0, 1)は可分となります．
　l2の場合と同様に X上の共役作用素，自己共役作
用素，正規作用素，コンパクト作用素を（3）（4）
（5）などで定義でき，コンパクトな正規作用素は適
切な正規直交基底をとることにより対角行列とゼロ作
用素の直和で表せます．（対角行列のみの場合もゼロ作用
素のみの場合もあります．）正規なコンパクト作用素を
対角化したとき対角線上の実数または複素数は固有値
でしたが，次に固有値を含む集合であるスペクトルを
定義します．作用素 Tのスペクトル σ(T)に複素数 λ

が属するとは，

となる作用素 Sが存在しないこと，つまり T－λIが
逆作用素を持たないということです．（上式の Iは xに
xを対応させる恒等作用素です．）

　有限次元空間上の線形作用素については σ(T)は固
有値の集合と一致しますが無限次元空間ではそうとは
限りません．また，Tが自己共役ならば σ(T)は実数
の集合に含まれます．
　専門的な内容になるので詳しくは述べませんが，コ
ンパクトを仮定しない一般の正規作用素 Nについて
はスペクトル σ(N)上に定義されたスペクトル測度 E

を用いて

と表せ，その構造は明確になります（スペクトル分解定
理）．また，σ(N)上の連続関数 f(z)に対して f(N)を

とスペクトル分解定理を用いて定義します．（実際は連
続関数よりも一般的な関数に対しても定義できます．）

■	作用素不等式，正規作用素の拡張

　正規作用素を一般化した作用素を紹介する前に作用
素に順序を導入します．ヒルベルト空間 X上の自己

　ここで，ノルムを と定義します．
　このとき Xの点列 {xk}が xに収束するとは

となることです．
　Xが n次元内積空間であるとき，正規直交基底 e1, 

e2, …, enが存在します．このとき，どの xに対して
も複素数α1,α2, …,αnが存在して一意に（6）のよう
に表せます．xと xのこの正規直交基底による座標
（α1,α2, …,αn）を同一視することにより Xは内積空
間である Cnと同一視できます．（n次元線形空間も同様
に内積が定義されていない線形空間としての Cnと同一視で
きます．）この座標を用いて X上の線形作用素は n×n

行列で表現できます．行列について調べることにより
Rnや Cnだけではなく抽象的な有限次元線形空間，
有限次元内積空間上の線形作用素について理解が得ら
れます．
　次に完備性について紹介します．Xの点列 {xk}が
コーシー列であるとは

となることです．
　コーシー列が必ず収束することを完備と言い，完備
な内積空間をヒルベルト空間と言います．完備性は空
間に穴が空いていないことを表しています．（もし，空
間に穴が開いているなら穴に近づく点列はコーシー列だが極
限が存在せず収束しないので，完備性が成立しません．）

　具体例である R2, R3, C3, Cn, l2, L2(0, 1)はすべて，
ヒルベルト空間の公理をみたすので，ヒルベルト空間
について得られた結果はこれらの具体例すべてに対し
て成立し，一般的な結果となります．
　ヒルベルト空間 Xから Xへの作用素の線形性を式
（1）と同様に定義します．l2の場合と同様に線形作
用素が連続となるとは限らないので以下連続な線形作
用素のみ考えます．
　無限次元ヒルベルト空間 Xが可分（大学数学の話に
なりますが高々可算な稠密部分集合が存在すること）とい
う条件をみたすとき正規直交基底 e1, e2, e3, …が存在
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があります．これは l2で座標を右に一つずらす作用
素です．U+を l2上で行列表現すると

となります．
U+が正規でないことは，U＋*を求め U＋*U+－U+U＋*

を計算して確かめることができます．次に正規な拡大
があることを確認しましょう．l2の元の成分をマイナ
ス方向にまで広げた

の集合を l2
±とします．ただし が収束すると

いう条件をつけ，和，複素数倍，内積は l2と同様に
定義します．（ヒルベルト空間になります．）l2

±上の両側
シフト作用素 U±:

は U+の拡大となり正規となることも計算すればわか
ります．（ただし，上式で ^は第 1成分を表します．U±

は l2
±で座標を右に一つずらす作用素です．）さらに U+は

無限大ハイポ正規となることも確認できます．
ちなみに U±を l2

±上で行列表現すると

となります（ 0 は (1,1)成分が 0であることを示してい
ます．）

　U+以外にも正規作用素ではないサブ正規作用素の
重要な具体例が存在し，ハイポ正規作用素等について
も同様です．これらの作用素を調べることにより様々
な具体例を統一的に扱うことができます．これらの作
用素にはスペクトル分解定理を適応できず未解明な点
が数多くありますが様々な研究がなされています．

共役作用素Aが正作用素であることを

で定義しA≥0と表記します．ちなみに任意の作用素
Tに対し T*Tや TT*は正作用素です．さらに正作
用素A, Bに対して順序A≥Bが成立することを

で定義します．
　A≥0のとき σ(A)のどの元も 0以上の実数となり
ます．p≥0に対し xpは σ(A)上の連続関数なのでス
ペクトル分解定理を用いてApが定義できAp≥0とな
ります．以下，p≥0とします．
　作用素不等式では次のレウナー -ハインツの不等式，
東京理科大学教授であられた古田孝之先生による古田
不等式が有名です．

古田不等式で r＝0とするとレウナー -ハインツの不
等式となります．
　次は正規作用素の拡張となる作用素を紹介します．
X上の作用素 Sがサブ正規であるとは，Xを含むヒ
ルベルト空間 Yと Y上の正規作用素 Nが存在して X

上では S＝Nとなること，つまり正規な拡張が存在す
ることです．正規作用素はサブ正規になります．
　また，X上の作用素 Tが pハイポ正規であるとは，

となることを言い，特に p＝1のときハイポ正規作用
素と言います．Tが無限大ハイポ正規作用素とは，
すべての p≥0に対し上式が成立することです．正規
作用素は無限大ハイポ正規となり，サブ正規作用素は
ハイポ正規となります．
　正規でないサブ正規作用素の具体例として l2上の
片側シフト作用素
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